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HEAT EXCHANGE BETWEEN A SELECTIVELY
EMITTING LIQUID AND A LAMINAR GAS FLOW
IN THE PRESENCE OF AN EXTERNAL SOURCE
OF RADIATION

N. A. Rubtsov and A. M. Shvartsbhurg ' UDC 536.24

An investigation is conducted in the solution of a number of practical problems of the radiative
and combined heat exchange in nonuniform systems having widely different physical properties.
The processes of thermal interaction between the ocean and the atmosphere have been treated
in the paper [1], the effect of thermal radiation on the melting and solidification of semitrans-
parent erystals has been investigated in [2], the flow of a selectively emitting gas around the
lateral surface of an object evaporating under the action of radiative heating has been discussed
in [3], and heat transfer from a jet to the molten mass of glass in a glassmaking furnace tank
has been investigated in [4]. The radiative and combined heat exchange between a selectively
emitting liquid and a transparent heat-conducting laminar gas flow in the case of a specified
external thermal radiation field is discussed in this paper. The energy conservation equations
are set up taking into account the heat transfer by radiation, convection, and molecular thermal
conduction. A differential approximation is used in calculating the values of the radiation fluxes.
A system of fundamental computational equations is solved by the method of finite differences
and iterations and by the Runge —Kutta method. The resulis of the calculations are presented

in the form of graphs.

CONVENTIONAL NOTATION

Bo=dpeyp/o (Ty—Tp,)? is the Boltzmann number; Iw =0 (T,— Ty )3a/A is the Ivanov number; Buy =wya is
the Bouguer number; Re=da/v is the Reynolds number; Bi=a g/ is the Biot number; 0={T—Ty)/(Ty—Tyy)
is the dimensionless temperature; U and V are the longitudinal and transverse dimensionless velocity com-
ponents, respectively; U, is the dimensionless velocity of the unperturbed gas flow; P=p/pd® is the dimension-
less pressure; p =pq/p Ty is the dimensionless dynamic viscosity coefficient: Eq A:E(')I ;\/o—('1‘0~Tm)‘i is the
dimensionless energy density of the radiation from an absolutely black body; qx is the dimensionless radiation
flux; qris the dimensionless flux of heat transported by conduction; 9n=g7tq is the dimensionless net heat
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flux; n and £ are the transverse and longltudmal d1mens1on1ess coordinates, respectively; I) (s) is the intensity
of the radiation propagating in the direction s; Ex and E; are the surface densities of the opposed radiation
fluxes propagating in the positive and negative directions of the normal to the bounding surface; T is the ab-
solute temperature; T, is the average temperature of the liquid at the cross section x=0; Ty, is the tempera-
ture of the surrounding medium; &, is the degree of blackness of the plate; n) is the index of refraction; p is
the density of the material; r) is the reflection coefficient; cp is the specific heat at constant pressure; A is
the thermal-conductivity coefficient; d is the rate of movement of plate 2 (Fig. 1); ! is the distance from the
leading edge; v is the kinematic vistosity coefficient; ET is the energy density of the radiation from an ab-
solutely black body; a is the thickness of the layer of 11qu1d %), is the volume absorption coefficient of radi-
ation; p is the pressure; ¢, is the speed of light; uy is the volume energy density of the radiation; & is the heat
transfer coefficient; o is the Stefan—Boltzmann constant; ¢ is the grid function; h is the grid spacing; and By is
the scattering coefficient.

Quantities referring to the liquid are marked by the index 1, and those referring to the gas by the index 2.

The physical model employed is presented in Fig. 1. A layer of highly viscous liquid is contained be-
tween the fixed plate 1 and the plate 2, which is moving at constant velocity. Gas irradiated from outside by a
thermal radiation flux having a wavelength-dependent density flows around plate 2.

It is necessary to calculate the distribution of the temperatures, velocities, and thermal fluxes in the
liquid and the gas.

The problem was solved on the assumption of the validity of the hypothesis of thermodynamie equilibri-
um. Plate 2 was assumed 1o be transparent and infinitely thin. The radiation fluxes were assumed to be lo-
cally uniform. The dependence of the dynamic viscosity coefficient of the liquid on the temperature was de-
scribed by the exponential formula

Wy == exp 6000/ T

All the remaining physical properties were assumed to be independent of temperature. The motion of the lig-
uid was assumed to be laminar, and the motion of the gas was considered far from the leading edge. Plate 1
gives off heat to its surroundings in accordance with Newton's law.

Following [5] in the calculation of the values of the radiation fluxes, we multiply the equation of transfer
for spectral radiation by cos (s, y)dwg, and integrating over the limits of spherical solid angle 4, we obtain
an expression for the transverse component of the radiation flux vector

Gy = —4;/00, + 8:8,)0/0y)csues), (1

where

oI, (s
S gs()cos(s, y)dws

(L)
al
S 2 () do
dy N
(4m)

4y, =

In the case of axisymmetric scattering indicatrices

8. = 1 —— | v.(8)sin 20d9.

Sty
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Differentiating the radiative energy conservation equation with respect to y, we obtain
By al0y* = — %0 (caun)ldy + 4niwIEs 4/0y. (2)

Using Egs. (1) and (2), we arrive at a differential equation with respect to the values of the radiation
fluxes

\

Pqyaldyt = [ (= + 6B ) Al gy + b ni0E) 410y. (3

It is necessary to supplement Eq. (3) with boundary conditions. Let n be the normal to the bounding sur-
face which is internal with respect to the emitting volume; then

Gn . = (,fq) I1(s) ndo, = Ei — Ei, {4)
A | () do,
= \1 S . Ei + EY). (5)
LUy, J 1{(8) do, j 7,6 feos (v, n)] do, ( o )
(&) (4)

If the temperature and the radiative properties of the bounding surface are specified, then
Ey = eniEq, + (1 —&)Ex. (6)
Upon the specification of the incident radiation density at the boundary of the system
Ef =(1—r)Ef e : (M

Using Egs. (4)-(7) and the radiative energy conservation equation, we obtain the following boundary con-
ditions for the differential equation (3):

2p0
S U S R B _AmEra
(EA 2 /) Inp. 2u,m,  on hiT b 2m,
2.0
1 aqn ) 0 4"}\.b'r *
_ X9 _ X ek Y
In Ry, On (1 — ) Bl inc m !

h
where

| sy dog
(4

| 1) leos (s, mil do

(470

m; =

In the case of an isotropic radiation field A) =1/3, m; =2. Using these values of the coefficients, ne-
glecting scattering of the radiative energy, and changing over to dimensionless variables, we obtain the equa-
tions of differential approximation [6] for calculation of the values of the radiative fluxes in the physical model
under discussion:

8°q/0n? — 3 Buig,, = 4 BuanfoEx/0m; (8)
(1/83— 1/2)qs, — (1/4Buy)dgs/on = 0 (q = O); (9
(1/2) g5, + (1/4Buy) 8. /00 = niEr s, — (1 — 13) Eajine (0 = 1). {10)

The thermal energy conservation equations, which are set up taking account of the heat transfer by ra-
diation, convection, and thermal conduction, are of the form

for the liquid
Bo,U,00,/0% — (1/Iw,)3%0,/anm* - 9¢/dn = 0; {11)
for the gas
Bo,U500,/38 -+ Boy Vad8,/0n — (1/Iw,)d%0,/0n% = 0. (12)
Egs. (11) and (12) are constrained by the following boundary conditions:
at plate 1 (n=0)
80,/ — Iw,q = Bi,0,: (13)
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at plate 2 (n=1)

8, = 0, (14)
99,/0n = (Iw,/Iw,)38,/0n; (15)
at the outer boundary of the gas (n— «)
88,/am = 0. (16)
In Egs. (11) and (13)
9= igq;.ali«. amn

The equations of motion and the boundary conditions for them are written
Re 0P/ = (ow/dn)aU,/on -+ nd*U,/on%; (18)
Ulnmo =0, Uy yoq =1 (19)
for the liquid and

Uy = Usf'(n*), Vo = 0,5V [Upv/d(Ea + Dim*f" — f);
n* = (n — o) TA(Ea 7 B

2flll + f,f” o 0; . (20)
f=0, f == 1/U, when y* = 0, (21)
f* =1 when 9* — o0 (22)

for the gas.

The system of Equations (8)-(19) was solved by the method of finite differences and iterations. A vari-
able grid which compresses near the plates is used. The first and second derivatives were approximated by
the difference relations

Cpi = (Ci+1 — ci)/hi;

enm,i = (L) (st — ea)lhy — (e, — ei—1)/hi—i],

respectively, where
hi = 0,5 (hi + h,;_.i).

The parabolic equations (11) and (12) and the boundary conditions (13)-(16) for them were approximated by a
double-level implicit difference scheme. The systems of finite-difference equations obtained in this way were
solved at each iteration by the sweep method. The boundary-value problems (20-22) was reduced with
the help of the method suggested in [7] to a Cauchy problem and was solved by the Runge —Kutta method.

The wavelength dependence of the volume radiation absorption coefficient of the liquid used in the cal-
culations is shown in Fig. 2 and corresponds to the absorption coefficient of molten window glass [8]. The en-
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TABLE 1
Wavelengthinterval, g 10—1.2 1220 2.0—24% 24265 206528 2.8—3.0
E; [Version 1 1 0.5 A4 55 0.2 0,2 0.2
ersion 2 I 1.5 0.5 0.5 3,0 35 7.0

tire spectrum was broken up into a number of intervals Ax;(i=1, 2, ..., 6), in each of which the absorption
coefficient was averaged according to the formula

i Id
Zavi= AT t} K;_d}v-
: Ak .
The results of the calculation of the temperatures and thermal fluxes for two versions of the spectral
composition of the incident radiation flux are presented in Figs. 3-5 [a) first version; b) second version]. The

quantities

Ei= | (1 —r) Erinc dh

Al
for each version are presented in Table 1 (the integrated density of the transmitted radiation E=ZE; was
kept unchanged). The remaining parameters had the following values:

Bo, = 330; Bo, = 36; Iw, = 10; Iw, = 307;
Re = 1.0; 0P/98 = —06.0; Bi= 1.5; 7, = 1300 °K;
Th== 300 K; d = 5.0m/sec; U, = 10;
a=05m]=100m.

The refractive index of the liquid and the degree of blackness of the plate were assumed to be indepen-~
dent of wavelength and equal to n=1 and £=0.1, respectively.

The sharp decrease in the net thermal flux at the surface of the liquid upon the shift from the short-
wavelength to the long-wavelength region of the spectrum of the maximum of the radiative energy penetrating
into the liquid (see Fig. 3) draws attention to itself. This situation is explained in the following way. Heat re-
lease to the liquid depends on the ratio of two radiation fluxes: that incident from outside and that emitted by
the liquid itself. The liquid absorbs thermal radiation strongly in the long-wavelength region; therefore, in
the second version only a thin surface layer of the liquid is heated up whose temperature rapidly increases
(see Fig. 4b, solid curves). The energy absorbed by the surface is freely reradiated into the gaseous medium,
and the net heat flux decreases. A more uniform heating of the liquid occurs in the first version (see Fig. 4a,
solid curves), since the liquid is relatively transparent in the short-wavelength region of the spectrum and the
thermal radiation reaches deep layers. The energy re-emitted by them is shielded by the upper layers, which
results in a decrease in the outflow of thermal radiation from the liquid, and consequently to an increase in
the heat release.

Thus, by varying the spectral composition of the incident radiation flux it is possible either to intensify
the heat release to the liquid or to use it as a radiation screen.

We note that although the heating of the liquid occurs from above, the temperature at the surface turns
out to be lower than at some depth (see Fig. 4a, b). A similar thin cooled layer is detected at the surface of
the ocean and is called the cold film [1]. The heat fluxes transferred both by radiation and by molecular con-
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duction (the solid and dashed curves, respectively, in Fig. 5a, b) affect the formation of the cold film in the
physical model under discussion. The absorption of radiative energy in the deep layers of the liquid predom-
inates over its emission in the first version of the calculation (9q/8n <0, Fig. 5a). The upper layer of the lig-
uid emits thermal energy freely, and starting at some temperature, the emission exceeds the absorption (8q/
91> 0 near the surface, Fig. 5a). The indicated situation results in a decrease in the temperature of the upper
layer of the liquid in comparison with the temperature of the deep layers. The subsequent heating of the sur-
face is carried out only by molecular conduction from the lower-lying layers of the liquid and from the gas
(the quantities qr and dq/0n change their sign upon approaching the surface, Fig. 5a). As a result of the
conductive outflow of heat to the liquid, the temperature in the surface layer of the gas becomes lower than
the temperature of the undisturbed gas flow (the dashed curves in Fig. 4a). In the second version the principal
portion of the energy of the incident radiation is absorbed by a thin surface layer of the liquid whose tempera-
ture increases and becomes higher than the temperature of the advancing gas flow.

In connection with this cirecumstance a conductive outflow of heat from the liquid to the gas begins which
results in the formation of a cold film. A change in the sign of the conductive component of the thermal flux
causes the formation of thermal waves in the surface layer of the gas (dashed curves in Fig. 4b). The deep
layers of the liquid, having attained a specified temperature, begin to lose thermal energy by emission (3q/
dn >0, Fig. 5b), and their subsequent heating is accomplished by the conductive supply of heat from the hot
surface layers.
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